
A Technique for Counting NATted Hosts
Steven M. Bellovin

smb@research.att.com
AT&T Labs Research

Abstract— There have been many attempts to measure
how many hosts are on the Internet. Many of those end-
points, however, are NAT boxes (Network Address Trans-
lators), and actually represent several different computers.
We describe a technique for detecting NATs and counting
the number of active hosts behind them. The technique is
based on the observation that on many operating systems,
the IP header’s ID field is a simple counter. By suitable
processing of trace data, packets emanating from individ-
ual machines can be isolated, and the number of machines
determined. Our implementation, tested on aggregated lo-
cal trace data, demonstrates the feasibility (and limitations)
of the scheme.

I. INTRODUCTION

For a number of reasons, including the shortage of IPv4
addresses, many locations are connected to the Internet
by means of NAT (Network Adress Translator) [1] boxes.
NATs pose many challenges to protocols and to the Inter-
net architecture [2], but they also make life difficult for
people who want to count the number of hosts on the In-
ternet. A NAT box will use a very small number of IP
addresses—perhaps just one—but can act as a relay for
many different hosts behind it. Until now, there has been
no way to count how many distinct hosts are hidden behind
NATs. We propose a technique that can count the num-
ber of hosts accessing the Internet from behind small NAT
boxes (i.e., those that handle a small number of clients).

Our technique is based on the observation—well
known in some circles, but apparently not documented
anywhere—that the “id” field in the IP [3] header (here-
inafter referred to as IPid) is generally implemented as a
simple counter. (The same observation is used for differ-
ent purposes in [4].) As a consequence, consecutive pack-
ets emitted by a host will carry sequential IPid fields.
Strings of consecutive IPid’s represent strings of consec-
utive packets from a given host; by counting the number of

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee. IMW’02, Nov. 6-8, 2002, Marseille, France
Copyright 2002 ACM ISBN 1-58113-603-X/02/0011 . . . $5.00

strings coming from a given IP address, we can determine
how many hosts are really represented by that address.

Naturally, life is not that simple, for quite a variety of
reasons. The most obvious is that not all packets from a
machine are sent to the Internet. Some may stay on a LAN;
indeed, some are sent to the “loopback” address, and stay
within the host. Our algorithm must therefore handle gaps
and irregular spacing.

A second complication is that not all hosts use simple
counters. Some use byte-swapped counters. That is, since
there are no defined semantics to the IPidfield, and hence
no reason to make it a counter, some operating systems
running on “little-endian” hardware don’t bother putting
the counter into “network” (big-endian) byte order.

Some hosts take evasive measures. Since the IPid
field is used only for fragment reassembly (see below),
some Linux kernels use a constant 0 when emitting Path
MTU discovery [5] packets, since they cannot be frag-
mented. Recent versions of OpenBSD and some ver-
sions of FreeBSD use a pseudo-random number genera-
tor for the IPid field. Some versions of Solaris use sep-
arate sequence number spaces for each

�
source, destina-

tion, protocol � triple, to avoid fragment collisions from
busy hosts. All of these complicate (and to some extent
block) the analysis.

These difficulties notwithstanding, we have imple-
mented this scheme and tested it using synthetic NAT data
(see Section III) derived from real packet traces. The full
algorithm is described in Section II. Our observations and
conclusions are described in Section III. How to block our
analytic technique—which turns out to be the behavior re-
quired for correct functioning of NAT boxes—is described
in Section IV. A brief survey of the behavior of some com-
mercial devices is described in Section V. Future work is
outlined in Section VI.

A. Intended Uses of the IPid Field

As noted, the intended purpose of the IPid field is for
use in fragment reassembly. RFC 791 [3] describes its role
as follows:

The identification field is used to distinguish the
fragments of one datagram from those of an-
other. The originating protocol module of an

267

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

IP
 id

 v
al

ue

Packet Arrival Time (seconds)

(a)

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

IP
 id

 v
al

ue

Packet Arrival Time (seconds)

/tmp/yy: 5 hosts found

(b)

Fig. 1. (a) A view of some raw data. (b) The same file after
processing. All of the graphs show IPid as a function of
time.

internet datagram sets the identification field to
a value that must be unique for that source-
destination pair and protocol for the time the
datagram will be active in the internet system.
The originating protocol module of a complete
datagram sets the more-fragments flag to zero
and the fragment offset to zero.

In other words, the IPid field is just a bit string used
to make packets unique. There is no requirement that
it be a counter. Furthermore, there are other fields that
contribute to the uniqueness, one of which—the destina-
tion address—is likely to differ significantly in different
streams.

If there is no fragmentation, there is no need for the
IPid field. On the other hand, fragmentation can, in the-

TABLE I
VALUES OF PARAMETERS USED IN THE CURRENT VERSION

OF THE ALGORITHM.

Parameter Value
timelim 300
gaplim 64
timefac 5
gapfac 70
fsize 50

ory, happen anywhere. The IPid field must be unique
in all “live” packets that have the same protocol number
and source and destination IP addresses. If we assume that
packets can survive for up to 10 seconds (which is long, but
not preposterously so, for a worst-case check), and if we
assume that the average packet is 150 bytes long, simple
arithmetic shows that the maximum sending rate is limited
to about 7.8M bps. By today’s standards, this is not very
fast. If we assume that packets being sent that fast repre-
sent bulk data transfer, packets may be 1500 bytes long.
That bounds transmission speed to 78 Mbps, which is still
quite reachable. (Two machines on the author’s desk can
communicate at that speed.) In other words, fragmentation
during high-speed transmission may be problematic. Note,
too, that this transmission rate is per

�
source, destination,

protocol � triplet if and only if the IPid space is different
for different triplets.

II. ALGORITHM

Figure 1a shows a plot of a raw data file. Apart from
our desire to produce a single scalar value—the num-
ber of hosts behind the NAT—it is clear that some post-
processing is needed. The more-or-less horizontal lines
are individual hosts; there appear to be at least two, pos-
sibly three or four. The near-vertical lines are hosts with
byte-swapped IPid fields; there is at least one, and possi-
bly two. Processing the data (Figure 1b) shows that there
are five hosts, two of which used byte-swapped counters.
There may have been a sixth host—the sequencing algo-
rithm discarded 61 packets—but if so, it sent too few pack-
ets to be detected.

The basic algorithm is simple. We build up a set of
IPid sequences. When a new packet (i.e., a new IPid) is
received, we scan the set of sequences, seeing which one is
the “best” match. If we find one, we append the new IPid
to that sequence; otherwise, we create a new sequence of
length 1.

We define “best” according to the following algorithm:
� If the new IPid is more than timelim seconds older or

268

newer than the last received packet in the sequence, it is
deemed not to match, regardless of the other criteria.

� If the new IPid is exactly one higher than the last re-
ceived packet in a sequence, it is a Perfect match. (All
comparisons are done modulo

�����
.)

� If the IPid is within gaplim of the last packet received,
but has not been seen before, it is labeled OutOfOrder.
We do not currently distinguish between higher-numbered
IPid, which would indicate a small gap, and an IPid
lower than the last one received, which indicates out-of-
order reception.

� Finally, an IPid that is close enough but has been seen
before is labeled Dup.
The parameter values shown in Table I were determined
empirically, and may need to change for different environ-
ments.

After all of the sequences are collected, adjacent se-
quences may be coalesced. That is, sequences whose
ends are close enough (defined as IPid’s being within
gapfac � gaplim of each other, and received within time-
fac � timelim seconds of each other) are merged. This ac-
counts for hosts that send a moderate amount of local traf-
fic between sequences of Internet activity. We considered
using average packet rate as an additional discriminator,
but experience shows that that can vary too much.

Finally, sequences that are composed of less than fsize
packets are simply discarded. While they may represent
hosts that do not talk much to the Internet (and indeed,
some of those showed up in our tests), they can also repre-
sent failed guesses at sequences.

Our algorithm must take into account some of the com-
plications described in Section I. Packets with a 0 IPid
are the easiest: they’re dropped. We never let them match
any real sequence; otherwise, they can cause confusion if
they are temporally interspaced with a real sequence that is
wrapping around modulo

�����
. (A future version might as-

sign them to a special non-matching sequence; this would
allow determination of their temporal length.)

Swapped-byte sequences are more troublesome. We
maintain two different collections of sequences, one for
normally-incrmented IPid fields, and one for byte-
swapped IPid fields. When a new packet is received, we
match it against both collections. It is added to the se-
quence it matches best, regardless of which collection the
sequence is in. If it has an equal score on one sequence
in each collection, or if it does not match any sequence,
it is added to both collections. This is the primary cause
of failed sequences. (The current implementation does not
deal with close matches to two or more sequences in the
same collection, nor does it use as a differentiator how
close the IPid is to the expected value, save for the Per-

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

IP
 id

 v
al

ue

Packet Arrival Time (seconds)

fp-td-0a0: 5 hosts found

(a)

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

IP
 id

 v
al

ue

Packet Arrival Time (seconds)

Control data: 6 hosts

(b)

Fig. 2. Analytic and control graphs. (a) is the output from our
algorithm; (b) is an IPid plot of the actual input data, based
on IP address.

fect case described above.)
We do not currently attempt to deal with the randomized

IPid generator used by OpenBSD and FreeBSD. Crypt-
analyzing the generator may be infeasible in any event. It
should be possible to detect a random background to other,
linear sources; the current version of the code does not do
that.

III. OBSERVATIONS AND LIMITATIONS

We tested the program using “synthetic” NAT data. That
is, we did not pursue the obvious course of obtaining
packet header traces from locations likely to harbor NATs,
such as the head end of cable modem systems or the local
POP of a DSL provider. Apart from the difficulty of ob-
taining such traces—the monitoring point needs to be close

269

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

IP
 id

 v
al

ue

Packet Arrival Time (seconds)

fp-td-0a8: 5 hosts found

(a)

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

"0a8e"

(b)

Fig. 3. An example of IPid-space collision. (a) is the analytic
output; (b) is the real data stream.

to the outside of the NAT box, to avoid miscounts because
too many packets are going in different directions—such
data provides no easy way to validate the results. That is,
we can build our algorithm and look at the resulting graphs
and tables, but we would not know if we have miscounted.
In fact, our early experiments showed that it was very easy
to miss a lot of data.

Instead, we took real trace data and arbitrarily grouped
together various sets of machines as if they were behind a
NAT. That is, we analyzed the IPid sequence from a set
of machines, without looking at the actual IP addresses,
precisely as if they were all behind some NAT. (The partic-
ular subnet chosen was our organization’s wireless LAN,
since it had only client machines, rather than servers.) We
then compared the results of our analysis to the actual IP
address data. The results were very good: in no case were

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

IP
 id

 v
al

ue

Packet Arrival Time (seconds)

107: 7 hosts found

Fig. 4. Because of an IPid collision, two hosts are interpreted
as three.

we off by more than one, and in each of those cases the
omitted machines were very light users of the Internet, and
fell beneath our threshholds.

The packet trace data was from the Internet edge of a fa-
cility housing several hundred researchers. This preserved
the Intranet/Internet distinction; the monitor did not see
any Intranet-bound packets. We collected only the first 16
bytes of each outbound IP header, omitting the destination
IP address and higher-level headers. This preserved pri-
vacy: we learned nothing about any individual host other
than the rate at which it sent data to the Internet. We did not
learn the destination. We selected a client-only subnet—
our algorithms and data structures probably cannot cope
with the IPid change rate of a server, since there would
be too many different destinations intermingled—and di-
vided it up into smaller subnets of 16 addresses apiece.
We then analyzed separately the data for each such subnet.

A sample pair of graphs is shown in Figure 2. It is quite
clear that the two are almost identical. In fact, the only
notable difference is the sequence of some 0 IPid packets
in the control data. Investigation showed that those packets
came from a router that used a 0 IPid for link-local OSPF
packets, and a sequential IPid for TCP.

A second difference is that the analysis missed one host.
Examination of the source data showed that the missing
host sent only five packets, all with 0 IPid’s. (If you are
viewing a soft copy of this paper, you can see the points
on the control graph by zooming in on the X-axis at

���

�������
.)

Collisions in IPid space can prove troublesome. Fig-
ure 3 shows the analytic and control graphs of another sub-
net. In the sequence starting with IPid of about 26000, a
second host starts sending at about 1300 seconds into the

270

trace. The analysis missed that, and assumed that those
packets were from the first host. It did recognize the sec-
ond host at about

� � �������
, but mismatched both streams

until the second host went silent at
� ����� ���

.
A more serious collision is shown in Figure 4, where

what is obviously (and actually) two hosts are detected as
three.

In general, large numbers of packets (or even of hosts)
do not confuse the analysis engine. A test on 66,563 pack-
ets from 26 hosts produced a plausible (though not abso-
lutely correct) graph, with errors mostly from IPid colli-
sions. But large gaps in the space (presumably caused by
Intranet activity) cause considerable trouble. In one case,
activity from a busy file server produced a random-looking
distribution, enough so that we analyzed its behavior at a
quiet time of day.

We conclude that this technique is primarily suitable for
analyzing NATs serving networks with comparatively little
Intranet traffic. This would describe most home NATs and
virtually all hotel NATs. It does not describe the majority
of businesses, which tend to run their own file and email
servers.

IV. PRIVACY AND CORRECTNESS ISSUES

Many organizations (and individuals) do not wish any
disclosure of the number of machines behind their NATs.
A properly designed NAT can block information leakage;
however, a great deal of care is necessary to avoid violating
the defined semantics of the IPid field and IP fragment
reassembly. There are three possible cases.

In all packets emitted by the NAT, the source IP address
will be changed to either a single value or a value drawn
from a very small set. Furthermore, most packets use TCP.
This means that uniqueness must be maintained at least on
a per-destination address basis, if fragmentation is possi-
ble.

The simplest case, though, is if the DF (Don’t Frag-
ment) bit is set in the IP header of the incoming packet.
This is, in fact, reasonably common, since the DF flag is
used for Path MTU Discovery [5]. In such situations, the
NAT box can rewrite the IPid field freely, since there will
never be any reassembly. Setting it to 0, as Linux does, is
one possibility; as discussed below, in a NAT situation this
can leak information, and hence is probably undesirable.

The second case is ordinary packets with DF not set.
Such packets may be fragmented by any router along the
path to the destination, and hence must carry unique IPid
fields. Accordingly, a NAT should rewrite all such IPid
fields, to ensure uniqueness. (Setting the DF bit is gener-
ally inadvisable, since that would place the burden of Path
MTU Discovery on the NAT.)

Some hosts never use Path MTU Discovery; some use
it only for TCP. A NAT that treated DF packets differently
than non-DF packets for the same protocol would thus leak
the fact that at least two different policies exist behind it.
Therefore, to preserve privacy the NAT should do the same
thing—send a unique IPid field—on all packets.

The third case, though, is more complex, and puts an
extra burden on NATs: where already-fragmented packets
arrive at the NAT, it must preserve uniqueness while also
ensuring that all fragments of the same datagram carry the
same new IPid field. (This is noted as a problem in [1],
[6], though those documents do not suggest any solution.)
Doing so requires that it keep state for each fragment of
each packet, until it determines that it has sent all frag-
ments of it. As [7] notes, it is unclear how often this is
done.

Using a random IPidfield has its own challenges to
uniqueness. While linear congruential generators have a
maximal cycle length, such generators are easily cryptan-
alyzed [8], [9]. A keyed generator, as is used in OpenBSD
and FreeBSD, provides some protection, but one needs to
be careful to avoid duplication if the generator is rekeyed
periodically.

V. BEHAVIOR OF SOME COMMERCIAL NAT DEVICES

We performed some tests on a number of commercial
home NAT devices. In addition, we used the NAT compo-
nent of a version of Darren Reed’s IP Filter package.

We tried sending small and large (i.e., intentionally frag-
mented) ICMP “ping” packets, and TCP packets with and
without the “Don’t Fragment” bit set. We then monitored
the packets on both sides of the NAT. The results were the
same in all cases: the IPid field was not rewritten, the
correctness arguments discussed in Section IV notwith-
standing.

A further test would be to deliberately generate IPid
conflicts. This could be done by using a special system
that would watch for other machines’ outbound packets,
and deliberately emit its own packets with the same IPid.
We have not yet done that.

VI. FUTURE WORK

There are two major paths for future work: improving
the techniques described in this paper, and using the mech-
anisms to analyze the prevalance of NATs.

There is little more that can be said at this time about the
latter. Doing it depends on the availability of suitable data.
As noted, the scheme works best for smaller NATs, which
suggest that it is best applied to data collected from ISPs
providing broadband access to home and small business
users.

271

There are a number of clear directions for extending this
work. The first is better sequence detection algorithms.
There is at least a superficial similarity to some image pro-
cessing problems; it may be possible to adapt algorithms
from that field.

Another tack would be to use other packet header in-
formation to improve the analysis. For example, the TCP
4-tuple (source address, source port, destination address,
destination port) strongly identifies a connection (by defi-
nition!); such packets can be linked into a sequence with-
out inspection of the IPid field. Among other things, this
can help disambiguate IPid space collisions, as shown in
Figure 3.

Other protocols may contain similar sequence informa-
tion. IPsec [10] packets generally carry sequence numbers;
RTP [11] packets contain timestamps, etc.

Finally—and most intrusively—passive fingerprinting
[12] can be used to detect types of hosts behind a NAT.
The scheme may not be able to tell how many hosts of
each type exist, but it should be able to tell what types of
hosts are there.

VII. ACKNOWLEDGMENTS

Steve North suggested the scatter plot as a visualization
technique. The original idea for the detection algorithm
came from John Denker. Randy Bush made a number of
useful comments on the paper itself.

REFERENCES

[1] P. Srisuresh and K. Egevang, “Traditional IP network address
translator (traditional NAT),” RFC 3022, Internet Engineering
Task Force, Jan. 2001.

[2] T. Hain, “Architectural implications of NAT,” RFC 2993, Internet
Engineering Task Force, Nov. 2000.

[3] J. Postel, “Internet protocol,” RFC 791, Internet Engineering Task
Force, Sept. 1981.

[4] Ratul Mahajan, Neil T. Spring, and David Wetherall, “Measuring
ISP topologies with Rocketfuel,” in Proceedings of SIGCOMM
2002, 2002, to appear.

[5] J. C. Mogul and S. E. Deering, “Path MTU discovery,” RFC
1191, Internet Engineering Task Force, Nov. 1990.

[6] M. Holdrege and P. Srisuresh, “Protocol complications with the
IP network address translator,” RFC 3027, Internet Engineering
Task Force, Jan. 2001.

[7] D. Senie, “Network address translator (nat)-friendly application
design guidelines,” RFC 3235, Internet Engineering Task Force,
Jan. 2002.

[8] Jim Reeds, ““Cracking” a random number generator,” Cryptolo-
gia, vol. 1, no. 1, January 1977.

[9] Jacques Stern, “Secret linear congruential generators are not cryp-
tographically secure,” in Proceedings of the IEEE Symposium on
Foundations of Computer Science, 1987.

[10] S. Kent and R. Atkinson, “Security architecture for the inter-
net protocol,” RFC 2401, Internet Engineering Task Force, Nov.
1998.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a
transport protocol for real-time applications,” RFC 1889, Internet
Engineering Task Force, Jan. 1996.

[12] Honeynet Project, “Know your enemy: Passive fingerprint-
ing,” March 2002, http://project.honeynet.org/
papers/finger.

272

